Oxidation mechanism of the intermetallic compound Ti 3Al from ab initio thermodynamics

Shi Yu Liu, Shiyang Liu, Dejun Li, Tara M. Drwenski, Wenhua Xue, Hongli Dang, Sanwu Wang

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Ab initio density-functional theory and thermodynamics calculations are combined to establish a microscopic mechanism for the oxidation of the α 2-Ti 3Al(0001) surface. The surface energies as functions of the chemical potentials, as well as structural relaxations and electronic densities of states, are determined. The surface phase diagram (SPD) of the α 2-Ti 3Al(0001) systems with different defects and at various oxygen coverages is constructed. It is found that the Al antisite defect prefers to segregate on the α 2-Ti 3Al(0001) surface and oxygen adsorption enhances the segregation with the formation of the surface with three Al antisites per unit surface cell (i.e. the top surface layer is full of Al atoms) at the initial stage of oxidation, accounting for the aluminum selective oxidation observed experimentally. After the initial stage of oxidation, the O-α 2- Ti 3Al(0001) system manifests itself with a non-uniform double-phase SPD, suggesting the competition between oxidations of the Al and Ti elements in the oxidation process. This result explains the experimentally observed second regime of oxidation in which both metal elements are oxidized.

Original languageEnglish
Pages (from-to)11160-11166
Number of pages7
JournalPhysical Chemistry Chemical Physics
Volume14
Issue number31
DOIs
StatePublished - Aug 21 2012
Externally publishedYes

Fingerprint

Dive into the research topics of 'Oxidation mechanism of the intermetallic compound Ti 3Al from ab initio thermodynamics'. Together they form a unique fingerprint.

Cite this