Abstract
We report a new parameterization of ionization in the Earth's atmosphere by isotropically precipitating monoenergetic (100 eV to 1 MeV) electrons. This new parameterization is the first one based on sophisticated first-principle models, and represents a significant improvement in accuracy, particularly for incident auroral and lower energies. Without previous need to interpolate over source energy and atmospheric range, the new parameterization provides an easier implementation with a robust fit of model calculations for a wide range of incident energies and atmospheric conditions. By decomposing any incident energy spectrum into contiguous monoenergetic components and then calculating and integrating their resulting ionization, our parameterization is a valuable tool that can be used in conjunction with global models to accurately quantify the impact from realistic precipitating electrons during space weather events.
| Original language | English |
|---|---|
| Article number | L22106 |
| Journal | Geophysical Research Letters |
| Volume | 37 |
| Issue number | 22 |
| DOIs | |
| State | Published - Nov 1 2010 |