TY - GEN
T1 - Partitioning with space-filling curves on the cubed-sphere
AU - Dennis, John M.
N1 - Publisher Copyright:
© 2003 IEEE.
PY - 2003
Y1 - 2003
N2 - Numerical methods for solving the systems of partial differential equations arising in geophysical fluid dynamics rely on a variety of spatial discretization schemes (e.g. finite difference, finite element). For parallel execution on distributed memory computers, the computational domain must be partitioned. The choice of partitioning algorithm can have a significant impact on the sustained floating point execution rate of an atmospheric model. The NCAR spectral element atmospheric model employs a gnomonic projection of a cube onto the surface of the sphere. The six cube faces are each subdivided into an array of quadrilateral spectral elements. When the cubed-sphere is partitioned using METIS, both computational load imbalance and communication requirements can lead to sub-optimal performance. In this paper, Hilbert, Peano, and nested Hilbert m-Peano space filling curves are investigated as the basis of alternative partitioning algorithms. The resulting partitions allow a maximum 22% increase in the sustained floating point execution rate versus METIS on O(1000) processors, when running a relatively high resolution climate simulation.
AB - Numerical methods for solving the systems of partial differential equations arising in geophysical fluid dynamics rely on a variety of spatial discretization schemes (e.g. finite difference, finite element). For parallel execution on distributed memory computers, the computational domain must be partitioned. The choice of partitioning algorithm can have a significant impact on the sustained floating point execution rate of an atmospheric model. The NCAR spectral element atmospheric model employs a gnomonic projection of a cube onto the surface of the sphere. The six cube faces are each subdivided into an array of quadrilateral spectral elements. When the cubed-sphere is partitioned using METIS, both computational load imbalance and communication requirements can lead to sub-optimal performance. In this paper, Hilbert, Peano, and nested Hilbert m-Peano space filling curves are investigated as the basis of alternative partitioning algorithms. The resulting partitions allow a maximum 22% increase in the sustained floating point execution rate versus METIS on O(1000) processors, when running a relatively high resolution climate simulation.
UR - https://www.scopus.com/pages/publications/84947214122
U2 - 10.1109/IPDPS.2003.1213486
DO - 10.1109/IPDPS.2003.1213486
M3 - Conference contribution
AN - SCOPUS:84947214122
T3 - Proceedings - International Parallel and Distributed Processing Symposium, IPDPS 2003
BT - Proceedings - International Parallel and Distributed Processing Symposium, IPDPS 2003
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - International Parallel and Distributed Processing Symposium, IPDPS 2003
Y2 - 22 April 2003 through 26 April 2003
ER -