Persistence of moist plumes from overshooting convection in the Asian monsoon anticyclone

Sergey M. Khaykin, Elizabeth Moyer, Martina Krämer, Benjamin Clouser, Silvia Bucci, Bernard Legras, Alexey Lykov, Armin Afchine, Francesco Cairo, Ivan Formanyuk, Valentin Mitev, Renaud Matthey, Christian Rolf, Clare E. Singer, Nicole Spelten, Vasiliy Volkov, Vladimir Yushkov, Fred Stroh

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

The Asian monsoon anticyclone (AMA) represents one of the wettest regions in the lower stratosphere (LS) and is a key contributor to the global annual maximum in LS water vapour. While the AMA wet pool is linked with persistent convection in the region and horizontal confinement of the anticyclone, there remain ambiguities regarding the role of tropopause-overshooting convection in maintaining the regional LS water vapour maximum. This study tackles this issue using a unique set of observations from aboard the high-altitude M55-Geophysica aircraft deployed in Nepal in summer 2017 within the EU StratoClim project. We use a combination of airborne measurements (water vapour, ice water, water isotopes, cloud backscatter) together with ensemble trajectory modelling coupled with satellite observations to characterize the processes controlling water vapour and clouds in the confined lower stratosphere (CLS) of the AMA. Our analysis puts in evidence the dual role of overshooting convection, which may lead to hydration or dehydration depending on the synoptic-scale tropopause temperatures in the AMA. We show that all of the observed CLS water vapour enhancements are traceable to convective events within the AMA and furthermore bear an isotopic signature of the overshooting process. A surprising result is that the plumes of moist air with mixing ratios nearly twice the background level can persist for weeks whilst recirculating within the anticyclone, without being subject to irreversible dehydration through ice settling. Our findings highlight the importance of convection and recirculation within the AMA for the transport of water into the stratosphere.

Original languageEnglish
Pages (from-to)3169-3189
Number of pages21
JournalAtmospheric Chemistry and Physics
Volume22
Issue number5
DOIs
StatePublished - Mar 10 2022
Externally publishedYes

Fingerprint

Dive into the research topics of 'Persistence of moist plumes from overshooting convection in the Asian monsoon anticyclone'. Together they form a unique fingerprint.

Cite this