Abstract
This bottom-up modeling study, supported by new population census 2011 data, simulates ozone (O3) and fine particulate matter (PM2.5) exposure on local to regional scales. It quantifies, present-day premature mortalities associated with the exposure to near-surface PM2.5 and O3 concentrations in India using a regional chemistry model. We estimate that PM2.5 exposure leads to about 570,000 (CI95: 320,000-730,000) premature mortalities in 2011. On a national scale, our estimate of mortality by chronic obstructive pulmonary disease (COPD) due to O3 exposure is about 12,000 people. The Indo-Gangetic region accounts for a large part (~42%) of the estimated mortalities. The associated lost life expectancy is calculated as 3.4 ± 1.1 years for all of India with highest values found for Delhi (6.3 ± 2.2 years). The economic cost of estimated premature mortalities associated with PM2.5 and O3 exposure is about 640 (350-800) billion USD in 2011, which is a factor of 10 higher than total expenditure on health by public and private expenditure.
| Original language | English |
|---|---|
| Pages (from-to) | 4650-4658 |
| Number of pages | 9 |
| Journal | Geophysical Research Letters |
| Volume | 43 |
| Issue number | 9 |
| DOIs | |
| State | Published - May 16 2016 |
Keywords
- air quality
- life expectancy
- premature mortality
- WRF-Chem