TY - JOUR
T1 - Quantitative estimation of hourly precipitation in the Tianshan Mountains based on area-to-point kriging downscaling and satellite-gauge data merging
AU - Lu, Xin yu
AU - Chen, Yuan yuan
AU - Tang, Guo qiang
AU - Wang, Xiu qin
AU - Liu, Yan
AU - Wei, Ming
N1 - Publisher Copyright:
© 2021, Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2022/1
Y1 - 2022/1
N2 - Precipitation, a basic component of the water cycle, is significantly important for meteorological, climatological and hydrological research. However, accurate estimation on the precipitation remains considerably challenging because of the sparsity of gauge networks and the large spatial variability of precipitation over mountainous regions. Moreover, meteorological stations in mountainous areas are often dispersed and have difficulty in accurately reflecting the intensity and evolution of precipitation events. In this study, we proposed a novel method to produce high-quality, high-resolution precipitation estimates in the Tianshan Mountains, China, based on area-to-point kriging (ATPK) downscaling and a two-step correction, i.e., probability density function matching-optimum interpolation (PDF-OI). We obtained 1-km hourly precipitation data in the Tianshan Mountains by merging estimates from the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) product with observations from 1065 meteorological stations in the warm season (May to September) during 2016–2018. The spatial resolution and accuracy of the merged precipitation data greatly increased compared to IMERG. According to a cross-validation with gauged observations, the correlation coefficient (CC), probability of detection (POD) and critical success index (CSI) increased from 0.30, 0.50 and 0.24 for IMERG to 0.63, 0.65 and 0.38, respectively, for the merged estimates, and the root mean squared error (RMSE), mean error (ME) and false alarm ratio (FAR) decreased from 0.46 to 0.38 mm/h, 0.06 to 0.05 mm/h and 0.69 to 0.52, respectively. The proposed method will be useful for developing high-resolution precipitation estimates in mountainous areas such as central Asia and the Belt and Road Initiative regions.
AB - Precipitation, a basic component of the water cycle, is significantly important for meteorological, climatological and hydrological research. However, accurate estimation on the precipitation remains considerably challenging because of the sparsity of gauge networks and the large spatial variability of precipitation over mountainous regions. Moreover, meteorological stations in mountainous areas are often dispersed and have difficulty in accurately reflecting the intensity and evolution of precipitation events. In this study, we proposed a novel method to produce high-quality, high-resolution precipitation estimates in the Tianshan Mountains, China, based on area-to-point kriging (ATPK) downscaling and a two-step correction, i.e., probability density function matching-optimum interpolation (PDF-OI). We obtained 1-km hourly precipitation data in the Tianshan Mountains by merging estimates from the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) product with observations from 1065 meteorological stations in the warm season (May to September) during 2016–2018. The spatial resolution and accuracy of the merged precipitation data greatly increased compared to IMERG. According to a cross-validation with gauged observations, the correlation coefficient (CC), probability of detection (POD) and critical success index (CSI) increased from 0.30, 0.50 and 0.24 for IMERG to 0.63, 0.65 and 0.38, respectively, for the merged estimates, and the root mean squared error (RMSE), mean error (ME) and false alarm ratio (FAR) decreased from 0.46 to 0.38 mm/h, 0.06 to 0.05 mm/h and 0.69 to 0.52, respectively. The proposed method will be useful for developing high-resolution precipitation estimates in mountainous areas such as central Asia and the Belt and Road Initiative regions.
KW - Area-to-point kriging (ATPK)
KW - Downscaling
KW - Hourly precipitation
KW - IMERG
KW - Tianshan Mountains
KW - merging
UR - https://www.scopus.com/pages/publications/85121578480
U2 - 10.1007/s11629-021-6901-5
DO - 10.1007/s11629-021-6901-5
M3 - Article
AN - SCOPUS:85121578480
SN - 1672-6316
VL - 19
SP - 58
EP - 72
JO - Journal of Mountain Science
JF - Journal of Mountain Science
IS - 1
ER -