TY - JOUR
T1 - Rainfall simulation associated with Typhoon Herb (1996) near Taiwan. Part I
T2 - The topographic effect
AU - Wu, Chun Chieh
AU - Yen, Tzu Hsiung
AU - Kuo, Ying Hwa
AU - Wang, Wei
PY - 2002/10
Y1 - 2002/10
N2 - In this study, a series of numerical experiments are performed to examine the ability of a high-resolution mesoscale model to predict the track, intensity change, and detailed mesoscale precipitation distributions associated with Typhoon Herb (1996), which made landfall over Taiwan. The fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5), with a 2.2-km horizontal grid spacing, successfully simulates the mesoscale rainfall distribution associated with Herb, and the predicted maximum 24-h rainfall of 1199 mm accounts for about 70% of the observed amount of 1736 mm at Mount A-Li. It is shown that, with an accurate track simulation, the ability of the model to simulate successfully the observed rainfall is dependent on two factors: the model's horizontal grid spacing and its ability to describe the Taiwan terrain. The existence of the Central Mountain Range has only a minor impact on the storm track, but it plays a key role in substantially increasing the total rainfall amounts over Taiwan. The analysis presented here shows that the model and terrain resolutions play a nearly equivalent role in the heavy precipitation over Mount A-Li. The presence of maximum vertical motion and heating rate in the lower troposphere, above the upslope mountainous region, is a significant feature of forced lifting associated with the interaction of the typhoon's circulation and Taiwan's mountainous terrain. Overall, Typhoon Herb is a case in point to indicate the intimate relation between Taiwan's topography and the rainfall distribution associated with a typhoon at landfall.
AB - In this study, a series of numerical experiments are performed to examine the ability of a high-resolution mesoscale model to predict the track, intensity change, and detailed mesoscale precipitation distributions associated with Typhoon Herb (1996), which made landfall over Taiwan. The fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5), with a 2.2-km horizontal grid spacing, successfully simulates the mesoscale rainfall distribution associated with Herb, and the predicted maximum 24-h rainfall of 1199 mm accounts for about 70% of the observed amount of 1736 mm at Mount A-Li. It is shown that, with an accurate track simulation, the ability of the model to simulate successfully the observed rainfall is dependent on two factors: the model's horizontal grid spacing and its ability to describe the Taiwan terrain. The existence of the Central Mountain Range has only a minor impact on the storm track, but it plays a key role in substantially increasing the total rainfall amounts over Taiwan. The analysis presented here shows that the model and terrain resolutions play a nearly equivalent role in the heavy precipitation over Mount A-Li. The presence of maximum vertical motion and heating rate in the lower troposphere, above the upslope mountainous region, is a significant feature of forced lifting associated with the interaction of the typhoon's circulation and Taiwan's mountainous terrain. Overall, Typhoon Herb is a case in point to indicate the intimate relation between Taiwan's topography and the rainfall distribution associated with a typhoon at landfall.
UR - https://www.scopus.com/pages/publications/0036821288
U2 - 10.1175/1520-0434(2003)017<1001:RSAWTH>2.0.CO;2
DO - 10.1175/1520-0434(2003)017<1001:RSAWTH>2.0.CO;2
M3 - Article
AN - SCOPUS:0036821288
SN - 0882-8156
VL - 17
SP - 1001
EP - 1015
JO - Weather and Forecasting
JF - Weather and Forecasting
IS - 5
ER -