Representation of modes of variability in six U.S. Climate models

Clara Orbe, Luke van Roekel, Ángel F. Adames, Amin Dezfuli, John Fasullo, Peter J. Gleckler, Jiwoo Lee, Wei Li, Larissa Nazarenko, Gavin A. Schmidt, Kenneth R. Sperber, Ming Zhao

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

We compare the performance of several modes of variability across six U.S. climate modeling groups, with a focus on identifying robust improvements in recent models [including those participating in phase 6 of the Coupled Model Intercomparison Project (CMIP)] compared to previous versions. In particular, we examine the representation of the Madden–Julian oscillation (MJO), El Niño–Southern Oscillation (ENSO), the Pacific decadal oscillation (PDO), the quasi-biennial oscillation (QBO) in the tropical stratosphere, and the dominant modes of extratropical variability, including the southern annular mode (SAM), the northern annular mode (NAM) [and the closely related North Atlantic Oscillation (NAO)], and the Pacific–North American pattern (PNA). Where feasible, we explore the processes driving these improvements through the use of ‘‘intermediary’’ experiments that utilize model versions between CMIP3/5 and CMIP6 as well as targeted sensitivity experiments in which individual modeling parameters are altered. We find clear and systematic improvements in the MJO and QBO and in the teleconnection patterns associated with the PDO and ENSO. Some gains arise from better process representation, while others (e.g., the QBO) from higher resolution that allows for a greater range of interactions. Our results demonstrate that the incremental development processes in multiple climate model groups lead to more realistic simulations over time.

Original languageEnglish
Pages (from-to)7591-7617
Number of pages27
JournalJournal of Climate
Volume33
Issue number17
DOIs
StatePublished - Sep 2020

Fingerprint

Dive into the research topics of 'Representation of modes of variability in six U.S. Climate models'. Together they form a unique fingerprint.

Cite this