Abstract
We describe the scientific design work behind the selection of the IR spectral passbands for the 21 sounding channels of the High Resolution Dynamics Limb Sounder (HIRDLS), which is scheduled to fly aboard the Earth Observing System chemistry platform at the beginning of the next century. At least one radiometer channel must be used for each gas that is being measured. Preferably the interfering contributions to the radiance by other gases in a channel should be small, but the principal requirements are that the desired emission be measured with high signal-to-noise ratio and that there be separate channels for the measurement of interfering species. However, more than one channel is required for providing full altitude coverage of those target gases such as CO2H2O, and O3which have emission bands whose centers become optically thick in the middle atmosphere. Further channels, in which gaseous absorption is low, are required for the characterization of aerosol effects. We describe the HIRDLS channels selected for each gas, with emphasis on signal-to-noise considerations and altitude coverage, the elimination of contaminating signal between channels, and nonlocal thermodynamic equilibrium processes for high-altitude sounding and space view definition.
| Original language | English |
|---|---|
| Pages (from-to) | 7006-7018 |
| Number of pages | 13 |
| Journal | Applied Optics |
| Volume | 34 |
| Issue number | 30 |
| DOIs | |
| State | Published - Oct 1995 |