TY - JOUR
T1 - Shallow cumulus representation and its interaction with radiation and surface at the convection gray zone
AU - Pedruzo-Bagazgoitia, Xabier
AU - Jiménez, Pedro A.
AU - Dudhia, Jimy
AU - De Arellano, Jordi Vilà Guerau
N1 - Publisher Copyright:
© 2019 American Meteorological Society.
PY - 2019
Y1 - 2019
N2 - This study presents a systematic analysis of convective parameterizations performance with interactive radiation, microphysics, and surface on an idealized day with shallow convection. To this end, we analyze a suite of mesoscale numerical experiments (i.e., with parameterized turbulence). In the first set, two different convection schemes represent shallow convection at a 9-km resolution. These experiments are then compared with model results omitting convective parameterizations at 9- and 3-km horizontal resolution (gray zone). Relevant in our approach is to compare the results against two simulations by different large-eddy simulation (LES) models. Results show that the mesoscale experiments, including the 3-km resolution, are unable to adequately represent the timing, intensity, height, and extension of the shallow cumulus field. The main differences with LES experiments are the following: a too late onset, too high cloud base, and a too early transport of moisture too high, overestimating the second cloud layer. Related to this, both convective parameterizations produce warm and dry biases of up to 2K and 2 g kg-1, respectively, in the cloud layer. This misrepresentation of the cloud dynamics leads to overestimated shortwave radiation variability, both spacewise and timewise. Domain-averaged shortwave radiation at the surface, however, compares satisfactorily with LES. The shortwave direct and diffuse partition is misrepresented by the convective parameterizations with an underestimation (overestimation) of diffuse (direct) radiation both locally and, by a relative 40% (10%), of the domain average.
AB - This study presents a systematic analysis of convective parameterizations performance with interactive radiation, microphysics, and surface on an idealized day with shallow convection. To this end, we analyze a suite of mesoscale numerical experiments (i.e., with parameterized turbulence). In the first set, two different convection schemes represent shallow convection at a 9-km resolution. These experiments are then compared with model results omitting convective parameterizations at 9- and 3-km horizontal resolution (gray zone). Relevant in our approach is to compare the results against two simulations by different large-eddy simulation (LES) models. Results show that the mesoscale experiments, including the 3-km resolution, are unable to adequately represent the timing, intensity, height, and extension of the shallow cumulus field. The main differences with LES experiments are the following: a too late onset, too high cloud base, and a too early transport of moisture too high, overestimating the second cloud layer. Related to this, both convective parameterizations produce warm and dry biases of up to 2K and 2 g kg-1, respectively, in the cloud layer. This misrepresentation of the cloud dynamics leads to overestimated shortwave radiation variability, both spacewise and timewise. Domain-averaged shortwave radiation at the surface, however, compares satisfactorily with LES. The shortwave direct and diffuse partition is misrepresented by the convective parameterizations with an underestimation (overestimation) of diffuse (direct) radiation both locally and, by a relative 40% (10%), of the domain average.
KW - Cloud parameterizations
KW - Cloud radiative effects
KW - Cloud resolving models
UR - https://www.scopus.com/pages/publications/85073888307
U2 - 10.1175/MWR-D-19-0030.1
DO - 10.1175/MWR-D-19-0030.1
M3 - Article
AN - SCOPUS:85073888307
SN - 0027-0644
VL - 147
SP - 2467
EP - 2483
JO - Monthly Weather Review
JF - Monthly Weather Review
IS - 7
ER -