Abstract
Using tide gauge (TG) observations, we identify pronounced multidecadal fluctuations in sea level along the US Northeast Coast (USNEC) superimposed on a long-term increasing trend. This multidecadal sea level variability, largely arising from fluctuations in the buoyancy-driven Atlantic meridional overturning circulation (AMOC), substantially modulates the frequency of flood occurrences along the USNEC and serves as a source of multiyear predictability. Using an initialized dynamical downscaling decadal prediction system with a 1/12° ocean resolution, we demonstrate that flood frequency along the USNEC can be predicted on multiyear to decadal timescales. The long-term increasing trend in flood frequency, mainly driven by increasing greenhouse gases and associated radiative forcing changes, can be predicted a decade ahead. Furthermore, detrended flood frequency along the USNEC exhibits prediction skill for up to 3 years, as verified by TG observation. This multiyear prediction skill is achieved using prediction models that are initialized from our best estimate of observed AMOC.
| Original language | English |
|---|---|
| Article number | eads4419 |
| Journal | Science advances |
| Volume | 11 |
| Issue number | 20 |
| DOIs | |
| State | Published - May 16 2025 |
| Externally published | Yes |