TY - JOUR
T1 - Statistical downscaling of climate forecast system seasonal predictions for the Southeastern Mediterranean
AU - Wu, Wanli
AU - Liu, Yubao
AU - Ge, Ming
AU - Rostkier-Edelstein, Dorita
AU - Descombes, Gael
AU - Kunin, Pavel
AU - Warner, Thomas
AU - Swerdlin, Scott
AU - Givati, Amir
AU - Hopson, Thomas
AU - Yates, David
PY - 2012/11/15
Y1 - 2012/11/15
N2 - Most of the annual rainfall in the Southeastern Mediterranean falls in the wet season from November to March. It is associated with Mediterranean cyclones, and is sensitive to climate variability. Predicting the wet season precipitation with a few months advance is highly valuable for water resource planning and climate-associated risk management in this semi-arid region. The regional water resource managements and climate-sensitive economic activities have relied on seasonal forecasts from global climate prediction centers. However due to their coarse resolutions, global seasonal forecasts lack regional and local scale information required by regional and local water resource managements. In this study, an analog statistical-downscaling algorithm, k-nearest neighbors (KNN), was introduced to bridge the gap between the coarse forecasts from global models and the needed fine-scale information for the Southeastern Mediterranean. The algorithm, driven by the NCEP Climate Forecast System (CFS) operational forecast and the NCEP/DOE reanalysis, provides monthly precipitations at 2-4. months of lead-time at 18 stations within the major regional hydrological basins. Large-scale predictors for KNN were objectively determined by the correlations between the station historic daily precipitation and variables in reanalysis and CFS reforecast. Besides a single deterministic forecast, this study constructed sixty ensemble members for probabilistic estimates. The KNN algorithm demonstrated its robustness when validated with NCEP/DOE reanalysis from 1981 to 2009 as hindcasts before applied to downscale CFS forecasts. The downscaled predictions show fine-scale information, such as station-to-station variability. The verification against observations shows improved skills of this downscaling utility relative to the CFS model. The KNN-based downscaling system has been in operation for the Israel Water Authority predicting precipitation and driving hydrologic models estimating river flow and aquifer charge for water supply.
AB - Most of the annual rainfall in the Southeastern Mediterranean falls in the wet season from November to March. It is associated with Mediterranean cyclones, and is sensitive to climate variability. Predicting the wet season precipitation with a few months advance is highly valuable for water resource planning and climate-associated risk management in this semi-arid region. The regional water resource managements and climate-sensitive economic activities have relied on seasonal forecasts from global climate prediction centers. However due to their coarse resolutions, global seasonal forecasts lack regional and local scale information required by regional and local water resource managements. In this study, an analog statistical-downscaling algorithm, k-nearest neighbors (KNN), was introduced to bridge the gap between the coarse forecasts from global models and the needed fine-scale information for the Southeastern Mediterranean. The algorithm, driven by the NCEP Climate Forecast System (CFS) operational forecast and the NCEP/DOE reanalysis, provides monthly precipitations at 2-4. months of lead-time at 18 stations within the major regional hydrological basins. Large-scale predictors for KNN were objectively determined by the correlations between the station historic daily precipitation and variables in reanalysis and CFS reforecast. Besides a single deterministic forecast, this study constructed sixty ensemble members for probabilistic estimates. The KNN algorithm demonstrated its robustness when validated with NCEP/DOE reanalysis from 1981 to 2009 as hindcasts before applied to downscale CFS forecasts. The downscaled predictions show fine-scale information, such as station-to-station variability. The verification against observations shows improved skills of this downscaling utility relative to the CFS model. The KNN-based downscaling system has been in operation for the Israel Water Authority predicting precipitation and driving hydrologic models estimating river flow and aquifer charge for water supply.
KW - Climate model
KW - Ensemble forecast
KW - K-Nearest neighbors
KW - Seasonal prediction
KW - Southeastern Mediterranean
KW - Statistical downscaling
UR - https://www.scopus.com/pages/publications/84865050950
U2 - 10.1016/j.atmosres.2012.07.019
DO - 10.1016/j.atmosres.2012.07.019
M3 - Article
AN - SCOPUS:84865050950
SN - 0169-8095
VL - 118
SP - 346
EP - 356
JO - Atmospheric Research
JF - Atmospheric Research
ER -