Studies of gravity wave-induced fluctuations of the sodium layer using linear and nonlinear models

Jiyao Xu, A. K. Smith

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

In this paper we develop two models of the response of the sodium layer to gravity waves. The dynamical and photochemical effects are coupled, and ion reactions are included. First, we use a linear model, in which photochemical and dynamical equations are solved simultaneously and the background atmosphere remains fixed. The other model is a time dependent, nonlinear, photochemical-dynamical two-dimensional model composed of four modules: a dynamical gravity wave model, a middle atmospheric photochemical model, a sodium layer photochemical model, and an ionospheric model. The main differences between the simulations by the two models occur for sodium evolution near the peak and the bottomside of the sodium layer. Simulations indicate that a stable gravity wave induces large perturbations to the atomic sodium distribution at the bottomside of the sodium layer and that the perturbations are in phase with those of temperature. At the topside of the layer, sodium and temperature perturbations are out of phase. The response of the sodium layer to gravity waves is largest around 86 km, in the bottomside of the sodium layer, where the vertical gradients of sodium are larger. The background distribution of sodium evolves in the presence of the wave: the horizontal averaged sodium layer extends to lower altitudes. The sodium layer perturbations persist for a long time after dynamical gravity wave disappears. For a large amplitude gravity wave the nonlinear simulation of the sodium layer evolution is reasonable, while the linear simulation gives an unphysical solution at the bottom side of the sodium layer.

Original languageEnglish
Pages (from-to)D02306 1-17
JournalJournal of Geophysical Research
Volume109
Issue number2
DOIs
StatePublished - Jan 27 2004
Externally publishedYes

Keywords

  • Gravity waves
  • Mesopause
  • Mesosphere
  • Meteors
  • Sodium

Fingerprint

Dive into the research topics of 'Studies of gravity wave-induced fluctuations of the sodium layer using linear and nonlinear models'. Together they form a unique fingerprint.

Cite this