TY - JOUR
T1 - The association between wildfire smoke exposure and asthma-specific medical care utilization in Oregon during the 2013 wildfire season
AU - Gan, Ryan W.
AU - Liu, Jingyang
AU - Ford, Bonne
AU - O’Dell, Katelyn
AU - Vaidyanathan, Ambarish
AU - Wilson, Ander
AU - Volckens, John
AU - Pfister, Gabriele
AU - Fischer, Emily V.
AU - Pierce, Jeffrey R.
AU - Magzamen, Sheryl
N1 - Publisher Copyright:
© 2020, The Author(s), under exclusive licence to Springer Nature America, Inc.
PY - 2020/7/1
Y1 - 2020/7/1
N2 - Wildfire smoke (WFS) increases the risk of respiratory hospitalizations. We evaluated the association between WFS and asthma healthcare utilization (AHCU) during the 2013 wildfire season in Oregon. WFS particulate matter ≤ 2.5 μm in diameter (PM2.5) was estimated using a blended model of in situ monitoring, chemical transport models, and satellite-based data. Asthma claims and place of service were identified from Oregon All Payer All Claims data from 1 May 2013 to 30 September 2013. The association with WFS PM2.5 was evaluated using time-stratified case-crossover designs. The maximum WFS PM2.5 concentration during the study period was 172 µg/m3. A 10 µg/m3 increase in WFS increased risk in asthma diagnosis at emergency departments (odds ratio [OR]: 1.089, 95% confidence interval [CI]: 1.043–1.136), office visit (OR: 1.050, 95% CI: 1.038–1.063), and outpatient visits (OR: 1.065, 95% CI: 1.029–1.103); an association was observed with asthma rescue inhaler medication fills (OR: 1.077, 95% CI: 1.065–1.088). WFS increased the risk for asthma morbidity during the 2013 wildfire season in Oregon. Communities impacted by WFS could see increases in AHCU for tertiary, secondary, and primary care.
AB - Wildfire smoke (WFS) increases the risk of respiratory hospitalizations. We evaluated the association between WFS and asthma healthcare utilization (AHCU) during the 2013 wildfire season in Oregon. WFS particulate matter ≤ 2.5 μm in diameter (PM2.5) was estimated using a blended model of in situ monitoring, chemical transport models, and satellite-based data. Asthma claims and place of service were identified from Oregon All Payer All Claims data from 1 May 2013 to 30 September 2013. The association with WFS PM2.5 was evaluated using time-stratified case-crossover designs. The maximum WFS PM2.5 concentration during the study period was 172 µg/m3. A 10 µg/m3 increase in WFS increased risk in asthma diagnosis at emergency departments (odds ratio [OR]: 1.089, 95% confidence interval [CI]: 1.043–1.136), office visit (OR: 1.050, 95% CI: 1.038–1.063), and outpatient visits (OR: 1.065, 95% CI: 1.029–1.103); an association was observed with asthma rescue inhaler medication fills (OR: 1.077, 95% CI: 1.065–1.088). WFS increased the risk for asthma morbidity during the 2013 wildfire season in Oregon. Communities impacted by WFS could see increases in AHCU for tertiary, secondary, and primary care.
KW - Epidemiology
KW - Exposure modeling
KW - Population-based studies
UR - https://www.scopus.com/pages/publications/85079709256
U2 - 10.1038/s41370-020-0210-x
DO - 10.1038/s41370-020-0210-x
M3 - Article
C2 - 32051501
AN - SCOPUS:85079709256
SN - 1559-0631
VL - 30
SP - 618
EP - 628
JO - Journal of Exposure Science and Environmental Epidemiology
JF - Journal of Exposure Science and Environmental Epidemiology
IS - 4
ER -