TY - JOUR
T1 - The characteristics of weakly forced mountain-to-plain precipitation systems based on radar observations and high-resolution reanalysis
AU - Xiao, Xian
AU - Sun, Juanzhen
AU - Chen, Mingxuan
AU - Qie, Xiushu
AU - Wang, Yingchun
AU - Ying, Zhuming
N1 - Publisher Copyright:
© 2017. American Geophysical Union. All Rights Reserved.
PY - 2017
Y1 - 2017
N2 - The metropolis of Beijing in China is located on a plain adjacent to high mountains to its northwest and the gulf of the Bohai Sea to its southeast. One of the most challenging forecast problems for Beijing is to predict whether thunderstorms initiating over the mountains will propagate to the adjacent plains and intensify. In this study, 18 warm season convective cases between 2008 and 2013 initiating on the mountains and intensifying on the plains under weak synoptic forcing were analyzed to gain an understanding of their characteristics. The statistical analysis was based on mosaic reflectivity data from six operational Doppler radars and reanalysis data produced by the Four-Dimensional Variational Doppler Radar Analysis System (VDRAS). The analysis of the radar reflectivity data shows that convective precipitation strengthened on the plains at certain preferred locations. To investigate the environmental conditions favoring the strengthening of the mountain-to-plain convective systems, statistical diagnoses of the rapid-update (12 min) 3 km reanalyses from VDRAS for the 18 cases were performed by computing the horizontal and temporal means of convective available potential energy, convective inhibition, vertical wind shear, and low-level wind for the plain and mountain regions separately. The results were compared with those from a baseline representing the warm season average and from a set of null cases and found considerable differences in these fields between the three data sets. The mean distributions of VDRAS reanalysis fields were also examined. The results suggest that the convergence between the low-level outflows associated with cold pools and the south-southeasterly environmental flows corresponds well with the preferred locations of convective intensification on the plains.
AB - The metropolis of Beijing in China is located on a plain adjacent to high mountains to its northwest and the gulf of the Bohai Sea to its southeast. One of the most challenging forecast problems for Beijing is to predict whether thunderstorms initiating over the mountains will propagate to the adjacent plains and intensify. In this study, 18 warm season convective cases between 2008 and 2013 initiating on the mountains and intensifying on the plains under weak synoptic forcing were analyzed to gain an understanding of their characteristics. The statistical analysis was based on mosaic reflectivity data from six operational Doppler radars and reanalysis data produced by the Four-Dimensional Variational Doppler Radar Analysis System (VDRAS). The analysis of the radar reflectivity data shows that convective precipitation strengthened on the plains at certain preferred locations. To investigate the environmental conditions favoring the strengthening of the mountain-to-plain convective systems, statistical diagnoses of the rapid-update (12 min) 3 km reanalyses from VDRAS for the 18 cases were performed by computing the horizontal and temporal means of convective available potential energy, convective inhibition, vertical wind shear, and low-level wind for the plain and mountain regions separately. The results were compared with those from a baseline representing the warm season average and from a set of null cases and found considerable differences in these fields between the three data sets. The mean distributions of VDRAS reanalysis fields were also examined. The results suggest that the convergence between the low-level outflows associated with cold pools and the south-southeasterly environmental flows corresponds well with the preferred locations of convective intensification on the plains.
UR - https://www.scopus.com/pages/publications/85016436038
U2 - 10.1002/2016JD025914
DO - 10.1002/2016JD025914
M3 - Article
AN - SCOPUS:85016436038
SN - 0148-0227
VL - 122
SP - 3193
EP - 3213
JO - Journal of Geophysical Research
JF - Journal of Geophysical Research
IS - 6
ER -