TY - JOUR
T1 - The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP)
T2 - Understanding sea ice through climate-model simulations
AU - Notz, Dirk
AU - Jahn, Alexandra
AU - Holland, Marika
AU - Hunke, Elizabeth
AU - Massonnet, François
AU - Stroeve, Julienne
AU - Tremblay, Bruno
AU - Vancoppenolle, Martin
N1 - Publisher Copyright:
© 2016 The Author(s).
PY - 2016/9/23
Y1 - 2016/9/23
N2 - A better understanding of the role of sea ice for the changing climate of our planet is the central aim of the diagnostic Coupled Model Intercomparison Project 6 (CMIP6)-endorsed Sea-Ice Model Intercomparison Project (SIMIP). To reach this aim, SIMIP requests sea-ice-related variables from climate-model simulations that allow for a better understanding and, ultimately, improvement of biases and errors in sea-ice simulations with large-scale climate models. This then allows us to better understand to what degree CMIP6 model simulations relate to reality, thus improving our confidence in answering sea-ice-related questions based on these simulations. Furthermore, the SIMIP protocol provides a standard for sea-ice model output that will streamline and hence simplify the analysis of the simulated sea-ice evolution in research projects independent of CMIP. To reach its aims, SIMIP provides a structured list of model output that allows for an examination of the three main budgets that govern the evolution of sea ice, namely the heat budget, the momentum budget, and the mass budget. In this contribution, we explain the aims of SIMIP in more detail and outline how its design allows us to answer some of the most pressing questions that sea ice still poses to the international climate-research community.
AB - A better understanding of the role of sea ice for the changing climate of our planet is the central aim of the diagnostic Coupled Model Intercomparison Project 6 (CMIP6)-endorsed Sea-Ice Model Intercomparison Project (SIMIP). To reach this aim, SIMIP requests sea-ice-related variables from climate-model simulations that allow for a better understanding and, ultimately, improvement of biases and errors in sea-ice simulations with large-scale climate models. This then allows us to better understand to what degree CMIP6 model simulations relate to reality, thus improving our confidence in answering sea-ice-related questions based on these simulations. Furthermore, the SIMIP protocol provides a standard for sea-ice model output that will streamline and hence simplify the analysis of the simulated sea-ice evolution in research projects independent of CMIP. To reach its aims, SIMIP provides a structured list of model output that allows for an examination of the three main budgets that govern the evolution of sea ice, namely the heat budget, the momentum budget, and the mass budget. In this contribution, we explain the aims of SIMIP in more detail and outline how its design allows us to answer some of the most pressing questions that sea ice still poses to the international climate-research community.
UR - https://www.scopus.com/pages/publications/84977175441
U2 - 10.5194/gmd-9-3427-2016
DO - 10.5194/gmd-9-3427-2016
M3 - Article
AN - SCOPUS:84977175441
SN - 1991-959X
VL - 9
SP - 3427
EP - 3446
JO - Geoscientific Model Development
JF - Geoscientific Model Development
IS - 9
ER -