The Cooling Rate- And Volatility-Dependent Glass-Forming Properties of Organic Aerosols Measured by Broadband Dielectric Spectroscopy

Yue Zhang, Leonid Nichman, Peyton Spencer, Jason I. Jung, Andrew Lee, Brian K. Heffernan, Avram Gold, Zhenfa Zhang, Yuzhi Chen, Manjula R. Canagaratna, John T. Jayne, Douglas R. Worsnop, Timothy B. Onasch, Jason D. Surratt, David Chandler, Paul Davidovits, Charles E. Kolb

    Research output: Contribution to journalArticlepeer-review

    47 Scopus citations

    Abstract

    Glass transitions of secondary organic aerosols (SOA) from liquid/semisolid to solid phase states have important implications for aerosol reactivity, growth, and cloud formation properties. In the present study, glass transition temperatures (Tg) of isoprene SOA components, including isoprene hydroxy hydroperoxide (ISOPOOH), isoprene-derived epoxydiols (IEPOX), 2-methyltetrols, and 2-methyltetrol sulfates, were measured at atmospherically relevant cooling rates (2-10 K/min) by thin film broadband dielectric spectroscopy. The results indicate that 2-methyltetrol sulfates have the highest glass transition temperature, while ISOPOOH has the lowest glass transition temperature. By varying the cooling rate of the same compound from 2 to 10 K/min, the Tg of these compounds increased by 4-5 K. This temperature difference leads to a height difference of 400-800 m in the atmosphere for the corresponding updraft induced cooling rates, assuming a hygroscopicity value (κ) of 0.1 and relative humidity less than 95%. The Tg of the organic compounds was found to be strongly correlated with volatility, and a semiempirical formula between glass transition temperatures and volatility was derived. The Gordon-Taylor equation was applied to calculate the effect of relative humidity (RH) and water content at five mixing ratios on the Tg of organic aerosols. The model shows that Tg could drop by 15-40 K as the RH changes from <5 to 90%, whereas the mixing ratio of water in the particle increases from 0 to 0.5. These results underscore the importance of chemical composition, updraft rates, and water content (RH) in determining the phase states and hygroscopic properties of organic particles.

    Original languageEnglish
    Pages (from-to)12366-12378
    Number of pages13
    JournalEnvironmental Science and Technology
    Volume53
    Issue number21
    DOIs
    StatePublished - Nov 5 2019

    Fingerprint

    Dive into the research topics of 'The Cooling Rate- And Volatility-Dependent Glass-Forming Properties of Organic Aerosols Measured by Broadband Dielectric Spectroscopy'. Together they form a unique fingerprint.

    Cite this