Abstract
Lowaccuracy andcoarse spatial resolution are the twomaindrawbacks of satelliteprecipitation products. Therefore, calibration and downscaling are necessary before these products are applied. This study proposes a two-step framework to improve the accuracy of satellite precipitation estimates. The first step is data merging based on optimum interpolation (OI), and the second step is downscaling based on geographically weighted regression (GWR); therefore, the framework is called OI-GWR. An Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) (IMERG) product is used to demonstrate the effectiveness ofOI-GWR in the TianshanMountains, China. First, the original IMERG precipitation data (OIMERG) are merged with rain gauge data using the OI method to produce corrected IMERG precipitation data (CIMERG). Then, using CIMERG as the first guess and the normalized difference vegetation index (NDVI) as the auxiliary variable, GWR is utilized for spatial downscaling. The two-step OI-GWR method is compared with several traditional methods, including GWR downscaling (Ori_GWR) and spline interpolation. The cross-validation results show that (1) the OI method noticeably improves the accuracy of OIMERG, and (2) the 1-km downscaled data obtained using OI-GWR are much better than those obtained from Ori_GWR, spline interpolation, and OIMERG. The proposed OI-GWRmethod can contribute to the development of high-resolution and high-accuracy regional precipitation datasets. However, it should be noted that the method proposed in this study cannot be applied in regions without any meteorological stations. In addition, further efforts will be needed to achieve daily-or hourly-scale downscaling of precipitation.
| Original language | English |
|---|---|
| Article number | 398 |
| Journal | Remote Sensing |
| Volume | 12 |
| Issue number | 3 |
| DOIs | |
| State | Published - Feb 1 2020 |
| Externally published | Yes |
Keywords
- Downscaling
- Geographically weighted regression
- IMERG
- Optimum interpolation
- Precipitation
- Tianshan mountains