TY - JOUR
T1 - The global monsoon across time scales
T2 - Mechanisms and outstanding issues
AU - Wang, Pin Xian
AU - Wang, Bin
AU - Cheng, Hai
AU - Fasullo, John
AU - Guo, Zheng Tang
AU - Kiefer, Thorsten
AU - Liu, Zheng Yu
N1 - Publisher Copyright:
© 2017
PY - 2017/11
Y1 - 2017/11
N2 - The present paper addresses driving mechanisms of global monsoon (GM) variability and outstanding issues in GM science. This is the second synthesis of the PAGES GM Working Group following the first synthesis “The Global Monsoon across Time Scales: coherent variability of regional monsoons” published in 2014 (Climate of the Past, 10, 2007–2052). Here we introduce the GM as a planetary scale circulation system and give a brief accounting of why it exhibits regional structure. The primary driver of the GM is solar insolation, and the specific features in the underlying surface, such as land-sea distribution, topography, and oceanic circulations, are mainly responsible for the differences among regional monsoon systems. We then analyze the monsoon formation mechanisms, together with the major processes that drive monsoon variations at various timescales, including external forcings and internal feedbacks. On long time scales, external forcings often induce variability on a global scale, whereas short-term variability in regional monsoon systems is usually caused by internal feedbacks within the climate system. Finally, a number of debatable issues are discussed, with an emphasis on time scales beyond the instrumental record. These include the dual nature of the monsoon as wind and rain, the meaning of oxygen isotope in hydrological cycle, in particular of speleothem δ18O, the role of ice-sheet in monsoon variations, etc. In general, the GM as a system comprises a hierarchy of regional and local monsoons with various degrees of similarity, though all show coherent variability driven by a common solar forcing. The goal of the GM concept, therefore, is by no means to replace or diminish research on the regional monsoons, but to help dissect the mechanisms and controlling factors of monsoon variability at various temporal-spatial scales.
AB - The present paper addresses driving mechanisms of global monsoon (GM) variability and outstanding issues in GM science. This is the second synthesis of the PAGES GM Working Group following the first synthesis “The Global Monsoon across Time Scales: coherent variability of regional monsoons” published in 2014 (Climate of the Past, 10, 2007–2052). Here we introduce the GM as a planetary scale circulation system and give a brief accounting of why it exhibits regional structure. The primary driver of the GM is solar insolation, and the specific features in the underlying surface, such as land-sea distribution, topography, and oceanic circulations, are mainly responsible for the differences among regional monsoon systems. We then analyze the monsoon formation mechanisms, together with the major processes that drive monsoon variations at various timescales, including external forcings and internal feedbacks. On long time scales, external forcings often induce variability on a global scale, whereas short-term variability in regional monsoon systems is usually caused by internal feedbacks within the climate system. Finally, a number of debatable issues are discussed, with an emphasis on time scales beyond the instrumental record. These include the dual nature of the monsoon as wind and rain, the meaning of oxygen isotope in hydrological cycle, in particular of speleothem δ18O, the role of ice-sheet in monsoon variations, etc. In general, the GM as a system comprises a hierarchy of regional and local monsoons with various degrees of similarity, though all show coherent variability driven by a common solar forcing. The goal of the GM concept, therefore, is by no means to replace or diminish research on the regional monsoons, but to help dissect the mechanisms and controlling factors of monsoon variability at various temporal-spatial scales.
KW - Climate variability
KW - Hydrological cycle
KW - Monsoon
KW - Monsoon mechanism
KW - Precipitation
KW - Solar insolation
UR - https://www.scopus.com/pages/publications/85032476533
U2 - 10.1016/j.earscirev.2017.07.006
DO - 10.1016/j.earscirev.2017.07.006
M3 - Review article
AN - SCOPUS:85032476533
SN - 0012-8252
VL - 174
SP - 84
EP - 121
JO - Earth-Science Reviews
JF - Earth-Science Reviews
ER -