Abstract
An increase in winter air temperature can amplify snowmelt and sublimation in mountain regions with implications to water resources and ecological systems. Winter Warm Spells (WWS) are defined as a winter period (December to February, DJF) of at least 3 consecutive days with daily maximum temperature anomaly above the 90th percentile (using a moving-average of 15 days between 2001 and 2013). We calculate WWS for every 4-km grid cell within an atmospheric model over western North America to characterize WWS and analyze snow ablation and their changes in a warmer climate. We find that days with ablation during WWS represent a small fraction of winter days (0.6 days), however, 49% of total winter ablation (33.4 mm/DJF) occurs during WWS. Greater extreme ablation rates (99th percentile) occur 18% more frequently during WWS than during non-WWS days. Ablation rates during WWS in humid regions are larger (9 mm d−1) than in dry regions (7 mm d−1) in a warmer climate, which can be explained by differences in the energy balance and the snowpack's cold content. We find that warmer (0.8°C), longer (1.8 days) and more frequent (3.7 more events) WWS increase total winter ablation (on average 109% or 18 mm/DJF) in a warmer climate. Winter melt during WWS in warm and humid places is expected to increase about 3 times more than in the cold and dry region. This study provides a comprehensive description of WWS and their impact on snowpack dynamics, which is relevant to reservoir operations and water security.
| Original language | English |
|---|---|
| Article number | e2023WR034492 |
| Journal | Water Resources Research |
| Volume | 60 |
| Issue number | 5 |
| DOIs | |
| State | Published - May 2024 |
| Externally published | Yes |
Keywords
- Western North American mountains
- Winter Warm Spells
- convection-permitting simulation
- snowapack ablation
- warmer climate