The remote sensing of radiative forcing by light-absorbing particles (LAPs) in seasonal snow over northeastern China

Wei Pu, Jiecan Cui, Tenglong Shi, Xuelei Zhang, Cenlin He, Xin Wang

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Light-absorbing particles (LAPs) deposited on snow can decrease snow albedo and affect climate through snow-albedo radiative forcing. In this study, we use MODIS observations combined with a snow-albedo model (SNICAR - Snow, Ice, and Aerosol Radiative) and a radiative transfer model (SBDART - Santa Barbara DISORT Atmospheric Radiative Transfer) to retrieve the instantaneous spectrally integrated radiative forcing at the surface by LAPs in snow (RFLAPsMODIS) under clear-sky conditions at the time of MODIS Aqua overpass across northeastern China (NEC) in January-February from 2003 to 2017. (RFLAPsMODIS) presents distinct spatial variability, with the minimum (22.3 W m-2) in western NEC and the maximum (64.6 W m-2) near industrial areas in central NEC. The regional mean RFLAPsMODIS ∼ 45.1 ± 6.8 W m-2 in NEC. The positive (negative) uncertainties of retrieved RFLAPsMODIS. We attribute the variations of radiative forcing based on remote sensing and find that the spatial variance of RFLAPsMODIS in NEC is 74.6 % due to LAPs and 21.2 % and 4.2 % due to snow grain size and solar zenith angle. Furthermore, based on multiple linear regression, the BC dry and wet deposition and snowfall could explain 84 % of the spatial variance of LAP contents, which confirms the reasonability of the spatial patterns of retrieved RFLAPsMODIS using in situ radiative forcing estimates. We find that the biases in RFLAPsMODIS are negatively correlated with LAP concentrations and range from ∼ 5 % to ∼ 350 % in NEC.

Original languageEnglish
Pages (from-to)9949-9968
Number of pages20
JournalAtmospheric Chemistry and Physics
Volume19
Issue number15
DOIs
StatePublished - Aug 8 2019

Fingerprint

Dive into the research topics of 'The remote sensing of radiative forcing by light-absorbing particles (LAPs) in seasonal snow over northeastern China'. Together they form a unique fingerprint.

Cite this