TY - JOUR
T1 - The sensitivity of numerical simulation to orography specification in the low resolution spectral model-Part I
T2 - The effects of orography on the atmospheric general circulation
AU - Yunqi, Ni
AU - Otto-Bliesner, Bette L.
AU - Houghton, David D.
PY - 1987/3
Y1 - 1987/3
N2 - In order to identify the sensitivity of the numerical simulation to the orography specification in a low resolution spectral model, two sets of numerical experiments for full-mountain and no-mountain cases are performed. By comparing the results, it is possible to determine the eflects of mountains on the atmospheric general circulation. This is a global, spectral model incorporating the primitive equations sugmented by physical parameterization and mountains, with five equally-spaced sigma levels in the vertical ang a triangular truncation at wavenumber 10 in the horizontal. Analysis of results supports earlier work by demonstrating that the low resolution global spectral model is capable of simulating the major features of global general circulation and indicates that it is necessary to consider the effects of mouniains on stationary disturbances in the numerical simulation. The simulations show that topography plays an important role in intensifying heat sources for maintenance of disturbances. All the simulation tests indicate that orography has an important infiuence on the distribution of heat sources and sinks. It reflects that interaction and interrelation exist between the effects of orography and heat sources and the atmospheric circulhtion via the dynamical processes of atmosphere. This result confirms the view points proposed by Yeh and Zhu (1958), but differs from those by Kasahara and Washington (1971), Manabe and Terpstra (1974).
AB - In order to identify the sensitivity of the numerical simulation to the orography specification in a low resolution spectral model, two sets of numerical experiments for full-mountain and no-mountain cases are performed. By comparing the results, it is possible to determine the eflects of mountains on the atmospheric general circulation. This is a global, spectral model incorporating the primitive equations sugmented by physical parameterization and mountains, with five equally-spaced sigma levels in the vertical ang a triangular truncation at wavenumber 10 in the horizontal. Analysis of results supports earlier work by demonstrating that the low resolution global spectral model is capable of simulating the major features of global general circulation and indicates that it is necessary to consider the effects of mouniains on stationary disturbances in the numerical simulation. The simulations show that topography plays an important role in intensifying heat sources for maintenance of disturbances. All the simulation tests indicate that orography has an important infiuence on the distribution of heat sources and sinks. It reflects that interaction and interrelation exist between the effects of orography and heat sources and the atmospheric circulhtion via the dynamical processes of atmosphere. This result confirms the view points proposed by Yeh and Zhu (1958), but differs from those by Kasahara and Washington (1971), Manabe and Terpstra (1974).
UR - https://www.scopus.com/pages/publications/51649147776
U2 - 10.1007/BF02656657
DO - 10.1007/BF02656657
M3 - Article
AN - SCOPUS:51649147776
SN - 0256-1530
VL - 4
SP - 1
EP - 12
JO - Advances in Atmospheric Sciences
JF - Advances in Atmospheric Sciences
IS - 1
ER -