The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability

Scott W. McIntosh, Robert J. Leamon, Larisza D. Krista, Alan M. Title, Hugh S. Hudson, Pete Riley, Jerald W. Harder, Greg Kopp, Martin Snow, Thomas N. Woods, Justin C. Kasper, Michael L. Stevens, Roger K. Ulrich

Research output: Contribution to journalArticlepeer-review

103 Scopus citations

Abstract

Solar magnetism displays a host of variational timescales of which the enigmatic 11-year sunspot cycle is most prominent. Recent work has demonstrated that the sunspot cycle can be explained in terms of the intra- and extra-hemispheric interaction between the overlapping activity bands of the 22-year magnetic polarity cycle. Those activity bands appear to be driven by the rotation of the Sun's deep interior. Here we deduce that activity band interaction can qualitatively explain the 'Gnevyshev Gap'- a well-established feature of flare and sunspot occurrence. Strong quasi-annual variability in the number of flares, coronal mass ejections, the radiative and particulate environment of the heliosphere is also observed. We infer that this secondary variability is driven by surges of magnetism from the activity bands. Understanding the formation, interaction and instability of these activity bands will considerably improve forecast capability in space weather and solar activity over a range of timescales.

Original languageEnglish
Article number6491
JournalNature Communications
Volume6
DOIs
StatePublished - Apr 13 2015
Externally publishedYes

Fingerprint

Dive into the research topics of 'The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability'. Together they form a unique fingerprint.

Cite this