Abstract
A new probabilistic tornado detection algorithm was developed to potentially replace the operational tornado detection algorithm (TDA) for the WSR-88D radar network. The tornado probability algorithm (TORP) uses a random forest machine learning technique to estimate a probability of tornado occurrence based on single-radar data, and is trained on 166 145 data points derived from 0.5∘-tilt radar data and storm reports from 2011 to 2016, of which 10.4% are tornadic. A variety of performance evaluation metrics show a generally good model performance for discriminating between tornadic and nontornadic points. When using a 50% probability threshold to decide whether the model is predicting a tornado or not, the probability of detection and false alarm ratio are 57% and 50%, respectively, showing high skill by several metrics and vastly outperforming the TDA. The model weaknesses include false alarms associated with poor-quality radial velocity data and greatly reduced performance when used in the western United States. Overall, TORP can provide real-time guidance for tornado warning decisions, which can increase forecaster confidence and encourage swift decision-making. It has the ability to condense a multitude of radar data into a concise object-based information readout that can be displayed in visualization software used by the National Weather Service, core partners, and researchers.
| Original language | English |
|---|---|
| Pages (from-to) | 445-466 |
| Number of pages | 22 |
| Journal | Weather and Forecasting |
| Volume | 38 |
| Issue number | 3 |
| DOIs | |
| State | Published - Mar 2023 |
Keywords
- Algorithms
- Machine learning
- Nowcasting
- Radars/Radar observations
- Tornadoes