TY - JOUR
T1 - Toward a Globally-Applicable Uncertainty Quantification Framework for Satellite Multisensor Precipitation Products Based on GPM DPR
AU - Li, Zhe
AU - Wright, Daniel B.
AU - Hartke, Samantha H.
AU - Kirschbaum, Dalia B.
AU - Khan, Sana
AU - Maggioni, Viviana
AU - Kirstetter, Pierre Emmanuel
N1 - Publisher Copyright:
© 1980-2012 IEEE.
PY - 2023
Y1 - 2023
N2 - The usefulness of satellite multisensor precipitation products such as NASA's 30-min, 0.1° Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG) is hindered by their associated errors. Reliable estimates of uncertainty would mitigate this limitation, especially in near-real time when gauge observations are not available. However, creating such estimates is challenging, due to both the complicated nature of satellite precipitation errors and the lack of 'ground-truth' data precisely in the places - including oceans, complex terrain, and developing countries - that could benefit most from satellite precipitation estimates. In this work, we use the GPM dual-frequency precipitation radar (DPR)-derived swath-based precipitation products as an alternative to ground-based observations to facilitate IMERG uncertainty estimation. We compare the suitability of two DPR-derived precipitation products, 2ADPR and 2BCMB, against higher fidelity ground validation multiradar multisensor (GV-MRMS) ground reference data over the contiguous United States. The 2BCMB is selected to train error models based on censored shifted gamma distribution (CSGD; a mixed discrete-continuous probability distribution). Uncertainty estimates from these models are compared against alternative error models trained on GV-MRMS. Using information from NASA's Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) reanalysis, we also demonstrate how IMERG uncertainty estimates can be further constrained using additional precipitation-related predictors. Though several critical issues remain unresolved, the proposed method shows promise for yielding robust uncertainty estimates in near-real time for IMERG and other similar precipitation products at their native resolution across the entire globe.
AB - The usefulness of satellite multisensor precipitation products such as NASA's 30-min, 0.1° Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG) is hindered by their associated errors. Reliable estimates of uncertainty would mitigate this limitation, especially in near-real time when gauge observations are not available. However, creating such estimates is challenging, due to both the complicated nature of satellite precipitation errors and the lack of 'ground-truth' data precisely in the places - including oceans, complex terrain, and developing countries - that could benefit most from satellite precipitation estimates. In this work, we use the GPM dual-frequency precipitation radar (DPR)-derived swath-based precipitation products as an alternative to ground-based observations to facilitate IMERG uncertainty estimation. We compare the suitability of two DPR-derived precipitation products, 2ADPR and 2BCMB, against higher fidelity ground validation multiradar multisensor (GV-MRMS) ground reference data over the contiguous United States. The 2BCMB is selected to train error models based on censored shifted gamma distribution (CSGD; a mixed discrete-continuous probability distribution). Uncertainty estimates from these models are compared against alternative error models trained on GV-MRMS. Using information from NASA's Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) reanalysis, we also demonstrate how IMERG uncertainty estimates can be further constrained using additional precipitation-related predictors. Though several critical issues remain unresolved, the proposed method shows promise for yielding robust uncertainty estimates in near-real time for IMERG and other similar precipitation products at their native resolution across the entire globe.
KW - Dual-frequency precipitation radar (DPR)
KW - Global Precipitation Measurement (GPM) mission
KW - error model
KW - satellite multisensor precipitation (SMP)
KW - uncertainty
UR - https://www.scopus.com/pages/publications/85147215865
U2 - 10.1109/TGRS.2023.3235270
DO - 10.1109/TGRS.2023.3235270
M3 - Article
AN - SCOPUS:85147215865
SN - 0196-2892
VL - 61
JO - IEEE Transactions on Geoscience and Remote Sensing
JF - IEEE Transactions on Geoscience and Remote Sensing
M1 - 4100415
ER -