Towards a Dynamic Data Driven Application System for wildfire simulation

Jan Mandel, Lynn S. Bennethum, Mingshi Chen, Janice L. Coen, Craig C. Douglas, Leopoldo P. Franca, Craig J. Johns, Minjeong Kim, Andrew V. Knyazev, Robert Kremens, Vaibhav Kulkarni, Guan Qin, Anthony Vodacek, Jianjia Wu, Wei Zhao, Adam Zornes

Research output: Contribution to journalConference articlepeer-review

34 Scopus citations

Abstract

We report on an ongoing effort to build a Dynamic Data Driven Application System (DDDAS) for short-range forecast of wildfire behavior from real-time weather data, images, and sensor streams. The system should change the forecast when new data is received. The basic approach is to encapsulate the model code and use an ensemble Kalman filter in time-space. Several variants of the ensemble Kalman filter are presented, for out-of-sequence data assimilation, hidden model states, and highly nonlinear problems. Parallel implementation and web-based visualization are also discussed.

Original languageEnglish
Pages (from-to)632-639
Number of pages8
JournalLecture Notes in Computer Science
Volume3515
Issue numberII
DOIs
StatePublished - 2005
Event5th International Conference on Computational Science - ICCS 2005 - Atlanta, GA, United States
Duration: May 22 2005May 25 2005

Fingerprint

Dive into the research topics of 'Towards a Dynamic Data Driven Application System for wildfire simulation'. Together they form a unique fingerprint.

Cite this