Triple-frequency radar retrieval of microphysical properties of snow

Kamil Mroz, Alessandro Battaglia, Cuong Nguyen, Andrew Heymsfield, Alain Protat, Mengistu Wolde

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

An algorithm based on triple-frequency (X, Ka, W) radar measurements that retrieves the size, water content and degree of riming of ice clouds is presented. This study exploits the potential of multi-frequency radar measurements to provide information on bulk snow density that should underpin better estimates of the snow characteristic size and content within the radar volume. The algorithm is based on Bayes' rule with riming parameterised by the "fill-in"model. The radar reflectivities are simulated with a range of scattering models corresponding to realistic snowflake shapes. The algorithm is tested on multi-frequency radar data collected during the ESA-funded Radar Snow Experiment For Future Precipitation Mission. During this campaign, in situ microphysical probes were mounted on the same aeroplane as the radars. This nearly perfectly co-located dataset of the remote and in situ measurements gives an opportunity to derive a combined multi-instrument estimate of snow microphysical properties that is used for a rigorous validation of the radar retrieval. Results suggest that the triple-frequency retrieval performs well in estimating ice water content (IWC) and mean mass-weighted diameters obtaining root-mean-square errors of 0.13 and 0.15, respectively, for logĝ 10IWC and logĝ 10Dm. The retrieval of the degree of riming is more challenging, and only the algorithm that uses Doppler information obtains results that are highly correlated with the in situ data.

Original languageEnglish
Pages (from-to)7243-7254
Number of pages12
JournalAtmospheric Measurement Techniques
Volume14
Issue number11
DOIs
StatePublished - Nov 17 2021

Fingerprint

Dive into the research topics of 'Triple-frequency radar retrieval of microphysical properties of snow'. Together they form a unique fingerprint.

Cite this