Tropical Cyclone Surface Winds From Aircraft With a Neural Network

Alexander J. DesRosiers, Michael M. Bell, Jennifer C. Dehart, Jonathan L Vigh, Christopher M. Rozoff, Eric A. Hendricks

Research output: Contribution to journalArticlepeer-review

Abstract

Estimates of the surface wind field in a tropical cyclone (TC) are required in real time by operational forecast centers to warn the public about potential impacts to life and property. In-situ aircraft data must be adjusted from flight level to surface using wind reductions (WRs) since the aircraft cannot fly too low due to safety concerns. Current operational WRs do not capture all the variability in the TC surface wind field. In this study, an observational data set of Stepped Frequency Microwave Radiometer (SFMR) surface wind speeds that are collocated with flight-level predictors is used to analyze the variability of WRs with respect to aircraft altitude and TC storm motion and intensity. The Surface Winds from Aircraft with a Neural Network (SWANN) model is trained on the observations with a custom loss function that prioritizes accurate prediction of relatively rare high-wind observations and minimization of variance in the WRs. The model is capable of learning physical relationships that are consistent with theoretical understanding of the TC boundary layer. Radar-derived wind fields at flight level and independent dropwindsonde in-situ surface wind measurements are used to validate the SWANN model and show improvement over the current operational procedure. A test case shows that SWANN can produce a realistic asymmetric surface wind field from a radar-derived flight-level wind field which has a maximum wind speed similar to the operational intensity, suggesting promise for the method to lead to improved real-time TC intensity estimation and prediction in the future.
Original languageAmerican English
Pages (from-to)e2025JH000584
Number of pages21
JournalJournal of Geophysical Research: Machine Learning and Computation
Volume2
Issue number2
DOIs
StatePublished - May 28 2025

Funding

This work is funded as part of the NOAA Hurricane and Ocean Testbed (HOT) program by award NA22OAR4590521 through the Colorado State University Cooperative Institute for Research in the Atmosphere (CIRA). A. DesRosiers and M. Bell were also supported by Office of Naval Research award N00014‐20‐1‐2069. This material is based in part upon work supported by NSF NCAR, which is a major facility sponsored by the U.S. NSF under Cooperative Agreement No. 1852977.

FundersFunder number
NOAA Oceanic and Atmospheric Research Weather Program OfficeNA22OAR4590521, NA22OAR4590527

    Fingerprint

    Dive into the research topics of 'Tropical Cyclone Surface Winds From Aircraft With a Neural Network'. Together they form a unique fingerprint.

    Cite this