TY - JOUR
T1 - Tropical cyclones in global storm-resolving models
AU - Judt, Falko
AU - Klocke, Daniel
AU - Rios-Berrios, Rosimar
AU - Vanniere, Benoit
AU - Ziemen, Florian
AU - Auger, Ludovic
AU - Biercamp, Joachim
AU - Bretherton, Christopher
AU - Chen, Xi
AU - Düben, Peter
AU - Hohenegger, Cathy
AU - Khairoutdinov, Marat
AU - Kodama, Chihiro
AU - Kornblueh, Luis
AU - Lin, Shian Jiann
AU - Nakano, Masuo
AU - Neumann, Philipp
AU - Putman, William
AU - Röber, Niklas
AU - Roberts, Malcolm
AU - Satoh, Masaki
AU - Shibuya, Ryosuke
AU - Stevens, Bjorn
AU - Vidale, Pier Luigi
AU - Wedi, Nils
AU - Zhou, Linjiong
N1 - Publisher Copyright:
©The Author(s) 2021.
PY - 2021
Y1 - 2021
N2 - Rcnt progrss in computing and modl dvlopmnt has initiatd th ra of global storm-rsolving modling, and with it th potntial to transform wathr and climat prdiction. Within th gnral thm of vtting this nw class of modls, th prsnt study valuats nin global-storm rsolving modls in thir ability to simulat tropical cyclons (Cs). Rsults indicat that, broadly spaking, th modls produc ralistic Cs and rmov longstanding issus known from global modls such as th dficincy in accuratly simulating C intnsity. Howvr, Cs ar strongly affctd by modl formulation, and all modls suffr from uniqu biass rgarding th numbr of Cs, intnsity, siz, and structur. Som modls simulatd Cs bttr than othrs, but no singl modl was suprior in vry way. h ovrall rsults indicat that global storm-rsolving modls can opn a nw chaptr in C prdiction, but thy nd to b improvd to unlash thir full potntial.
AB - Rcnt progrss in computing and modl dvlopmnt has initiatd th ra of global storm-rsolving modling, and with it th potntial to transform wathr and climat prdiction. Within th gnral thm of vtting this nw class of modls, th prsnt study valuats nin global-storm rsolving modls in thir ability to simulat tropical cyclons (Cs). Rsults indicat that, broadly spaking, th modls produc ralistic Cs and rmov longstanding issus known from global modls such as th dficincy in accuratly simulating C intnsity. Howvr, Cs ar strongly affctd by modl formulation, and all modls suffr from uniqu biass rgarding th numbr of Cs, intnsity, siz, and structur. Som modls simulatd Cs bttr than othrs, but no singl modl was suprior in vry way. h ovrall rsults indicat that global storm-rsolving modls can opn a nw chaptr in C prdiction, but thy nd to b improvd to unlash thir full potntial.
KW - Global cloud rsolving simulation
KW - Modl valuation
KW - Numrical modl
KW - Tropical cyclon
UR - https://www.scopus.com/pages/publications/85105326102
U2 - 10.2151/jmsj.2021-029
DO - 10.2151/jmsj.2021-029
M3 - Article
AN - SCOPUS:85105326102
SN - 0026-1165
VL - 99
SP - 579
EP - 602
JO - Journal of the Meteorological Society of Japan
JF - Journal of the Meteorological Society of Japan
IS - 3
ER -