Validation of 10-year SAO OMI Ozone Profile (PROFOZ) product using ozonesonde observations

Guanyu Huang, Xiong Liu, Kelly Chance, Kai Yang, Pawan K. Bhartia, Zhaonan Cai, Marc Allaart, Gérard Ancellet, Bertrand Calpini, Gerrie J.R. Coetzee, Emilio Cuevas-Agulló, Manuel Cupeiro, Hugo De Backer, Manvendra K. Dubey, Henry E. Fuelberg, Masatomo Fujiwara, Sophie Godin-Beekmann, Tristan J. Hall, Bryan Johnson, Everette JosephRigel Kivi, Bogumil Kois, Ninong Komala, Gert König-Langlo, Giovanni Laneve, Thierry Leblanc, Marion Marchand, Kenneth R. Minschwaner, Gary Morris, Michael J. Newchurch, Shin Ya Ogino, Nozomu Ohkawara, Ankie J.M. Piters, Françoise Posny, Richard Querel, Rinus Scheele, Frank J. Schmidlin, Russell C. Schnell, Otto Schrems, Henry Selkirk, Masato Shiotani, Pavla Skrivánková, René Stübi, Ghassan Taha, David W. Tarasick, Anne M. Thompson, Valérie Thouret, Matthew B. Tully, Roeland Van Malderen, Holger Vömel, Peter Von Der Gathen, Jacquelyn C. Witte, Margarita Yela

Research output: Contribution to journalArticlepeer-review

50 Scopus citations

Abstract

We validate the Ozone Monitoring Instrument (OMI) Ozone Profile (PROFOZ) product from October 2004 through December 2014 retrieved by the Smithsonian Astrophysical Observatory (SAO) algorithm against ozonesonde observations. We also evaluate the effects of OMI row anomaly (RA) on the retrieval by dividing the dataset into before and after the occurrence of serious OMI RA, i.e., pre-RA (2004-2008) and post-RA (2009-2014). The retrieval shows good agreement with ozonesondes in the tropics and midlatitudes and for pressure <∼ 50g hPa in the high latitudes. It demonstrates clear improvement over the a priori down to the lower troposphere in the tropics and down to an average of ∼ 550 (300) hPa at middle (high) latitudes. In the tropics and midlatitudes, the profile mean biases (MBs) are less than 6 %, and the standard deviations (SDs) range from 5 to 10 % for pressure <∼ 50 hPa to less than 18 % (27 %) in the tropics (midlatitudes) for pressure >∼ 50 hPa after applyin OMI averagin kernels to ozonesonde data. The MBs of the stratospheric ozone column (SOC, the ozone column from the tropopause pressure to the ozonesonde burst pressure) are within 2 % with SDs of < 5 % and the MBs of the tropospheric ozone column (TOC) are within 6 % with SDs of 15 %. In the high latitudes, the profile MBs are within 10 % with SDs of 5-15 % for pressure <∼ 50 hPa but increase to 30 % with SDs as great as 40 % for pressure >∼ 50 hPa. The SOC MBs increase up to 3 % with SDs as great as 6 % and the TOC SDs increase up to 30 %. The comparison generally degrades at larger solar zenith angles (SZA) due to weaker signals and additional sources of error, leadin to worse performance at high latitudes and durin the midlatitude winter. Agreement also degrades with increasin cloudiness for pressure >∼ 100 hPa and varies with cross-track position, especially with large MBs and SDs at extreme off-nadir positions. In the tropics and midlatitudes, the post-RA comparison is considerably worse with larger SDs reachin 2 % in the stratosphere and 8 % in the troposphere and up to 6 % in TOC. There are systematic differences that vary with latitude compared to the pre-RA comparison. The retrieval comparison demonstrates good long-term stability durin the pre-RA period but exhibits a statistically significant trend of 0.14-0.7 % year-1 for pressure <∼ 80 hPa, 0.7 DU year-1 in SOC, and -0.33 DU year-1 in TOC durin the post-RA period. The spatiotemporal variation of retrieval performance suggests the need to improve OMI's radiometric calibration especially durin the post-RA period to maintain the long-term stability and reduce the latitude/season/SZA and cross-track dependency of retrieval quality.

Original languageEnglish
Pages (from-to)2455-2475
Number of pages21
JournalAtmospheric Measurement Techniques
Volume10
Issue number7
DOIs
StatePublished - Jul 13 2017
Externally publishedYes

Fingerprint

Dive into the research topics of 'Validation of 10-year SAO OMI Ozone Profile (PROFOZ) product using ozonesonde observations'. Together they form a unique fingerprint.

Cite this