TY - JOUR
T1 - Vertical Structure of Clouds and Precipitation During Arctic Cold-Air Outbreaks and Warm-Air Intrusions
T2 - Observations From COMBLE
AU - Lackner, Christian P.
AU - Geerts, Bart
AU - Juliano, Timothy W.
AU - Xue, Lulin
AU - Kosovic, Branko
N1 - Publisher Copyright:
© 2023. American Geophysical Union. All Rights Reserved.
PY - 2023/7/16
Y1 - 2023/7/16
N2 - The Arctic is marked by deep intrusions of warm, moist air, alternating with outbreaks of cold air down to lower latitudes. The typical vertical structure of clouds and precipitation during these two synoptic weather extremes is examined at a coastal site at 69°N in Norway. The Norwegian Sea is a corridor for warm-air intrusions (WAIs) and frequently witnesses cold-air outbreaks (CAOs). This study uses data from profiling radar, lidar, and microwave radiometer, radiosondes and other probes that were collected during the CAOs in the Marine Boundary Layer Experiment (COMBLE) between 1 December 2019 and 31 May 2020. Marine CAOs are defined in terms of thermal instability relative to the sea surface temperature, and WAIs in terms of equivalent potential temperature stratification between the surface and 850 hPa. Cloud structures in CAOs are convective, driven by strong surface heat fluxes over a long fetch of open water, with cloud tops rarely exceeding 6 km above sea level. The mostly open-cellular convection produces intermittent moderately-heavy precipitation at the observational site, notwithstanding the low precipitable water vapor (PWV). In contrast, WAIs are marked by high values of PWV and integrated vapor transport. WAI clouds are synoptically driven, stratiform, with cloud tops often exceeding 5 km, sometimes layered, and generally producing persistent precipitation that can be heavier than in CAOs.
AB - The Arctic is marked by deep intrusions of warm, moist air, alternating with outbreaks of cold air down to lower latitudes. The typical vertical structure of clouds and precipitation during these two synoptic weather extremes is examined at a coastal site at 69°N in Norway. The Norwegian Sea is a corridor for warm-air intrusions (WAIs) and frequently witnesses cold-air outbreaks (CAOs). This study uses data from profiling radar, lidar, and microwave radiometer, radiosondes and other probes that were collected during the CAOs in the Marine Boundary Layer Experiment (COMBLE) between 1 December 2019 and 31 May 2020. Marine CAOs are defined in terms of thermal instability relative to the sea surface temperature, and WAIs in terms of equivalent potential temperature stratification between the surface and 850 hPa. Cloud structures in CAOs are convective, driven by strong surface heat fluxes over a long fetch of open water, with cloud tops rarely exceeding 6 km above sea level. The mostly open-cellular convection produces intermittent moderately-heavy precipitation at the observational site, notwithstanding the low precipitable water vapor (PWV). In contrast, WAIs are marked by high values of PWV and integrated vapor transport. WAI clouds are synoptically driven, stratiform, with cloud tops often exceeding 5 km, sometimes layered, and generally producing persistent precipitation that can be heavier than in CAOs.
KW - Arctic
KW - clouds
KW - precipitation
KW - radar
UR - https://www.scopus.com/pages/publications/85164678385
U2 - 10.1029/2022JD038403
DO - 10.1029/2022JD038403
M3 - Article
AN - SCOPUS:85164678385
SN - 2169-897X
VL - 128
JO - Journal of Geophysical Research: Atmospheres
JF - Journal of Geophysical Research: Atmospheres
IS - 13
M1 - e2022JD038403
ER -